Liquid phase exfoliation and crumpling of inorganic nanosheets.
نویسندگان
چکیده
Here we demonstrate through experiment and simulation the polymer-assisted dispersion of inorganic 2D layered nanomaterials such as boron nitride nanosheets (BNNSs), molybdenum disulfide nanosheets (MoS2), and tungsten disulfide nanosheets (WS2), and we show that spray drying can be used to alter such nanosheets into a crumpled morphology. Our data indicate that polyvinylpyrrolidone (PVP) can act as a dispersant for the inorganic 2D layered nanomaterials in water and a range of organic solvents; the effectiveness of our dispersion process was characterized by UV-vis spectroscopy, microscopy and dynamic light scattering. Molecular dynamics simulations confirm that PVP readily physisorbs to BNNS surfaces. Collectively, these results indicate that PVP acts as a general dispersant for nanosheets. Finally, a rapid spray drying technique was utilized to convert these 2D dispersed nanosheets into 3D crumpled nanosheets; this is the first report of 3D crumpled inorganic nanosheets of any kind. Electron microscopy images confirm that the crumpled nanosheets (1-2 μm in diameter) show a distinctive morphology with dimples on the surface as opposed to a wrinkled, compressed surface, which matches earlier simulation results. These results demonstrate the possibility of scalable production of inorganic nanosheets with tailored morphology.
منابع مشابه
Two exfoliation approaches for organic layered compounds: hydrophilic and hydrophobic polydiacetylene nanosheets.
Nanosheets have attracted much interest because of their characteristic properties originating from anisotropic and flexible structures. Inorganic nanosheets are synthesized from precursor layered compounds through exfoliation in a liquid phase. In contrast, a versatile exfoliation approach has not been fully studied for organic layered compounds. Here we report two exfoliation approaches for o...
متن کاملThe facile fabrication of few-layer graphene and graphite nanosheets by high pressure homogenization.
We demonstrated a facile and efficient approach for the fabrication of few-layer graphene in DMF and graphite nanosheets in water with the assistance of high pressure homogenization. This work provides a physical perspective for understanding the exfoliation of other layered materials in liquid phase exfoliation.
متن کاملIn silico free energy predictions for ionic liquid-assisted exfoliation of a graphene bilayer into individual graphene nanosheets.
Free energies for graphene exfoliation from bilayer graphene using ionic liquids based on various cations paired with the bis(trifluoromethylsulfonyl)imide anion were determined from adaptive bias force-molecular dynamics (ABF-MD) simulation and fall in excellent qualitative agreement with experiment. This method has notable potential as an a priori screening tool for performance based rank ord...
متن کاملThe effect of the interlayer element on the exfoliation of layered Mo2AC (A = Al, Si, P, Ga, Ge, As or In) MAX phases into two-dimensional Mo2C nanosheets
The experimental exfoliation of layered, ternary transition-metal carbide and nitride compounds, known as MAX phases, into two-dimensional (2D) nanosheets, is a great development in the synthesis of novel low-dimensional inorganic systems. Among the MAX phases, Mo-containing ones might be considered as the source for obtaining Mo2C nanosheets with potentially unique properties, if they could be...
متن کاملA high-yield ionic liquid-promoted synthesis of boron nitride nanosheets by direct exfoliation.
Boron nitride nanosheets (BNNSs) with micron-sized edges were prepared in high yields by direct exfoliation of bulk hexagonal boron nitrides using ionic liquids (ILs). The ILs strongly attached onto BNNS surfaces, and dramatically enhanced the exfoliation, giving highly concentrated BNNS dispersions (∼1.9 mg mL(-1)) and yields reaching ∼50%.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical chemistry chemical physics : PCCP
دوره 17 14 شماره
صفحات -
تاریخ انتشار 2015